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HYPERGEOMETRIC FUNCTIONS AND SUBCLASSES OF HARMONIC

MAPPINGS

R.CHANDRASHEKAR, LEE SEE KEONG, K. G. SUBRAMANIAN

Abstract. The seminal works of Clunie and Sheil-Small (1984) and Sheil-Small (1990) on har-
monic mappings as generalizations of conformal mappings have given rise to investigations on
properties of several subclasses of harmonic univalent functions. Motivated by the study of Yalcin
and Oz̈truk (2004), a class HP (α, β) of functions harmonic and univalent in the unit disc, is con-
sidered in this paper. While connections between analytic univalent functions and hypergeometric
functions have been well explored, only a few investigations on analogous connections between
hypergeometric functions and harmonic mappings have taken place. Here sufficient conditions
for a hypergeometric function and an integral operator related to hypergeometric function, to be
in the class HP (α, β) are derived. Additional constraints yield coefficient characterizations of
the classes.

1. Introduction

The basic theory of harmonic mappings was developed in the seminal works of Clunie and Sheil-Small [6] and
Sheil-Small [16]. Since then harmonic univalent functions have been intensively investigated from the point of
view of geometric function theory. See for example [3, 7, 14] and references therein. In the well-established theory
of analytic univalent functions, there are several studies on hypergeometric functions associated with classes of
analytic functions (See for example [4, 8, 10–13, 15, 17]) investigating univalence, starlikeness and other properties
of these functions. On the other hand only some corresponding studies on connections of hypergeometric functions
with harmonic mappings have been done [1,2,5,9]. Pursuing this line of study and motivated by the study of Yalcin
and Oz̈truk [18] on a class of harmonic univalent functions, a subclass HP (α, β) of harmonic univalent functions
is considered here and results that bring out connections of hypergeometric functions with functions in this class
are established.

Let H be the class of continuous, complex-valued harmonic functions f(z) = u + iv which map the unit disk
U = {z ∈ C : |z| < 1} onto a domain D ⊂ C. In fact u and v are real harmonic in U . It is well-known [6] that such
a harmonic functions f can be written as f = h + ḡ, when h and g are analytic in U . It is also known [6] that a
sufficient condition for f = h+ ḡ to be locally univalent and sense preserving in U is that |h′(z)| > |g′(z)| in U .

Denote by SH the class of functions f = h + ḡ which are harmonic univalent and sense preserving in the unit
disk U and f normalized byf(0) = h(0) = fz(0) − 1 = 0. Thus, for f = h + ḡ ∈ SH we may express the analytic
functions h and g as

(1.1) h(z) = z +

∞∑
n=2

Anz
n, g(z) =

∞∑
n=1

Bnz
n, |B1| < 1.

Note that SH reduces to the class of normalized analytic univalent functions if the co-analytic part g of f is
identically zero. If φ1 and φ2 are analytic and f = h + ḡ is in SH , the convolution or the Hadamard product is
defined by

f ∗ (φ1 + φ2) = h ∗ φ1 + g ∗ φ2.

Let a, b and c be any complex numbers with c 6= 0,−1,−2,−3, . . . . Then the Gauss hypergeometric function written
as 2F1(a, b; c; z) or simply as F (a, b; c; z) is defined by

(1.2) F (a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)n(1)n

zn,
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where (λ)n is the Pochhammer symbol given by

(1.3) (λ)n =


1, (n = 0);

λ(λ+ 1)(λ+ 2) . . . (λ+ n− 1), (n = N ).

Since the hypergeometric series in (1.2) converges absolutely in U , it follows that F (a, b; c; z) defines a function
which is analytic in U , provided that c is neither zero nor a negative integer. In fact, F (a, b; c; 1) converges for
Re(c− a− b > 0) and is related to the gamma function by

(1.4) F (a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) , c 6= 0, 1, 2, . . .

In particular, the incomplete beta function, related to the Gauss hypergeometric function ϕ(a, c; z), is defined by

(1.5) ϕ(a, c; z) = zF (a, 1; c; z) =

∞∑
n=0

(a)n
(c)n

zn+1, z ∈ U , c 6= 0, 1, 2, . . . .

Throughout this paper, let G(z) = φ1(z) + φ2(z) be a function where φ1(z) and φ2(z) are the hypergeometric
functions defined by

(1.6) φ1(z) := zF (a1, b1; c1; z) = z +

∞∑
n=2

(a1)n−1(b1)n−1

(c1)n−1(1)n−1
zn,

(1.7) φ2(z) := F (a2, b2; c2 : z)− 1 =

∞∑
n=1

(a2)n(b2)n
(c2)n(1)n

zn, |a2b2| < |c2|.

The following lemma is needed to prove the main result.

Lemma 1.1. [2, Lemma 10] If a, b, c > 0, then

(i)

(1.8) F (a+ k, b+ k; c+ k; 1) =
(c)k

(c− a− b− k)k
F (a, b; c; 1),

for k = 0, 1, 2, . . . if c > a+ b+ k

(ii)

(1.9)

∞∑
n=1

n
(a)n(b)n
(c)n(1)n

=
ab

c− a− b− 1
F (a, b; c; 1)

if c > a+ b+ 1

(iii)

(1.10)

∞∑
n=1

n2 (a)n(b)n
(c)n(1)n

=

[
(a)2(b)2

(c− a− b− 2)2
+

ab

c− a− b− 1

]
F (a, b; c; 1)

if c > a+ b+ 2.

Based on the study in [18], for α ≥ 0 and 0 ≤ β < 1, we define a class HP (α, β) of harmonic functions of the
form (1.1) satisfying the condition

Re{αz[h′′(z) + g′′(z)] + [h′(z) + g′(z)]} > β

Lemma 1.2. If f = h+ ḡ is given by (1.1) and

(1.11)

∞∑
n=1

n[α(n− 1) + 1](|An|+ |Bn|) ≤ 2− β, 0 ≤ |B1| < 1− β,

where A1 = 1, α ≥ 0 and 0 ≤ β < 1 then f is harmonic univalent and sense preserving in U and f ∈ HP (α, β).

Proof. The proof of this lemma is on lines similar to the proof of Theorem 2.1 in [18].
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2. Main Results

Theorem 2.1. If aj , bj > 0 and cj > aj + bj + 2 for j = 1, 2, then a sufficient condition for G = φ1 + φ2 to be
harmonic univalent in U and G ∈ HP (α, β), is that

[
α(a1)2(b1)2

(c1 − a1 − b1 − 2)2
+

a1b1(2α+ 1)

c1 − a1 − b1 − 1
+ 1

]
F (a1, b1; c1; 1)(2.1)

+

[
α(a2)2(b2)2

(c2 − a2 − b2 − 2)2
+

a2b2
c2 − a2 − b2 − 1

]
F (a2, b2; c2; 1) ≤ 2− β

where α ≥ 0 and 0 ≤ β < 1.

Proof. When the condition (2.1) holds for the coefficients of G = φ1 + φ2, it is enough to prove that

(2.2)

∞∑
n=1

n(α(n− 1) + 1)

[
(a1)n−1(b1)n−1

(c1)n−1(1)n−1
+

(a2)n(b2)n
(c2)n(1)n

]
≤ 2− β.

Write the left side of equality (2.2) as

α

∞∑
n=1

n(n− 1)
(a1)n−1(b1)n−1

(c1)n−1(1)n−1
+ α

∞∑
n=1

n(n− 1)
(a2)n(b2)n
(c2)n(1)n

+

∞∑
n=1

n
(a1)n−1(b1)n−1

(c1)n−1(1)n−1
+

∞∑
n=1

n
(a2)n(b2)n
(c2)n(1)n

= α

∞∑
n=1

[(n− 1)2 + (n− 1)]
(a1)n−1(b1)n−1

(c1)n−1(1)n−1
+ α

∞∑
n=1

(n2 − n)
(a2)n(b2)n
(c2)n(1)n

+

∞∑
n=1

(n− 1 + 1)
(a1)n−1(b1)n−1

(c1)n−1(1)n−1
+

∞∑
n=1

n
(a2)n(b2)n
(c2)n(1)n

= α

∞∑
n=1

n2 (a1)n(b1)n
(c1)n(1)n

+ (α+ 1)

∞∑
n=1

n
(a1)n(b1)n
(c1)n(1)n

+

∞∑
n=0

(a1)n(b1)n
(c1)n(1)n

+ α

∞∑
n=1

n2 (a2)n(b2)n
(c2)n(1)n

− (α− 1)

∞∑
n=1

n
(a2)n(b2)n
(c2)n(1)n

= α

[
(a1)2(b1)2

(c1 − a1 − b1 − 2)2
+

a1b1
c1 − a1 − b1 − 1

]
F (a1, b1; c1; 1) + (α+ 1)

a1b1
c1 − a1 − b1 − 1

F (a1, b1; c1; 1)

+ F (a1, b1; c1; 1) + α

[
(a2)2(b2)2

(c2 − a2 − b2 − 2)2
+

a2b2
c2 − a2 − b2 − 1

]
F (a2, b2; c2; 1)

− (α− 1)
a2b2

c2 − a2 − b2 − 1
F (a2, b2; c2; 1),

by an application of equation (1.9) and (1.10).This yields (2.1) . It is sufficient to show that |φ′1(z)| > |φ′2(z)|,
to prove that G is locally univalent and sense-preserving in U .

|φ′1(z)| =

∣∣∣∣∣1 +

∞∑
n=2

n
(a1)n−1(b1)n−1

(c1)n−1(1)n−1
zn−1

∣∣∣∣∣
> 1−

∞∑
n=2

(n− 1)
(a1)n−1(b1)n−1

(c1)n−1(1)n−1
−
∞∑

n=2

(a1)n−1(b1)n−1

(c1)n−1(1)n−1

= 1− a1b1
c1

∞∑
n=1

(a1 + 1)n−1(b1 + 1)n−1

(c1 + 1)n−1(1)n−1
−
∞∑

n=1

(a1)n(b1)n
(c1)n(1)n

= 2− a1b1
c1

.
Γ(c1 + 1)Γ(c1 − a1 − b1 − 1)

Γ(c1 − a1)Γ(c1 − b1)
− Γ(c1)Γ(c1 − a1 − b1)

Γ(c1 − a1)Γ(c1 − b1)

= 2−
(

a1b1
c1 − a1 − b1 − 1

+ 1

)
F (a1, b1; c1; 1)

≥ 2− β −
[

α(a1)2(b1)2
(c1 − a1 − b1 − 2)2

+
a1b1(2α+ 1)

c1 − a1 − b1 − 1
+ 1

]
F (a1, b1; c1; 1)
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≥
[

α(a2)2(b2)2
(c2 − a2 − b2 − 2)2

+
a2b2

c2 − a2 − b2 − 1

]
F (a2, b2; c2; 1)

≥ a2b2
c2

Γ(c2 + 1)Γ(c2 − a2 − b2 − 1)

Γ(c2 − a2)Γ(c2 − b2)

=

∞∑
n=0

(a2)n+1(b2)n+1

(c2)n+1(1)n
>

∞∑
n=1

n
(a2)n(b2)n
(c2)n(1)n

|z|n−1

≥

∣∣∣∣∣
∞∑

n=1

n
(a2)n(b2)n
(c2)n(1)n

zn−1

∣∣∣∣∣ = |φ′2(z)|.

In fact, for |z1| ≤ |z2| < 1, we have

|G(z1)−G(z2)| ≥ |φ1(z1)− φ1(z2)| − |φ2(z1)− φ2(z2)|

=

∣∣∣∣∣(z1 − z2) +

∞∑
n=2

(a1)n−1(b1)n−1

(c1)n−1(1)n−1
(zn1 − zn2 )

∣∣∣∣∣−
∣∣∣∣∣
∞∑

n=1

(a2)n(b2)n
(c2)n(1)n

(zn1 − zn2 )

∣∣∣∣∣
≥ |z1 − z2|

[
1− a2b2

c2
−
∞∑

n=2

n

(
(a1)n−1(b1)n−1

(c1)n−1(1)n−1
+

(a2)n(b2)n
(c2)n(1)n

)
|z2|n−1

]

≥ |z1 − z2|

[
1− β − a2b2

c2
−
∞∑

n=2

n(α(n− 1) + 1)

(
(a1)n−1(b1)n−1

(c1)n−1(1)n−1
+

(a2)n(b2)n
(c2)n(1)n

)]

≥ |z1 − z2|

[
2− β −

(
1 +

a2b2
c2

+

∞∑
n=2

n(α(n− 1) + 1)

(
(a1)n−1(b1)n−1

(c1)n−1(1)n−1
+

(a2)n(b2)n
(c2)n(1)n

))]

= |z1 − z2|

[
2− β −

∞∑
n=1

n(α(n− 1) + 1)

[
(a1)n−1(b1)n−1

(c1)n−1(1)n−1
+

(a2)n(b2)n
(c2)n(1)n

]]
.

In view of (2.2), |G(z1)−G(z2)| ≥ 0 which shows that G is univalent in U .

Denote by HT (α, β) = HP (α, β)
⋂
TH where TH [14], is the class of harmonic functions f = h+ ḡ of the form

(2.3) h(z) = z −
∞∑

n=2

Anz
n, g(z) = −

∞∑
n=1

Bnz
n, An, Bn ≥ 0, for n = 1, 2, . . . , B1 < 1.

Lemma 2.2. If f = h+ ḡ is given by (2.3), then f ∈ HT (α, β) if and only if

∞∑
n=1

n[α(n− 1) + 1](|An|+ |Bn|) ≤ 2− β, 0 ≤ |B1| < 1− β,

where a1 = 1, α ≥ 0 and 0 ≤ β < 1.

Define

G1(z) = z

(
2− φ1(z)

z

)
− φ2(z)

= z −
∞∑

n=2

(a1)n−1(b1)n−1

(c1)n−1(1)n−1
zn −

∞∑
n=1

(a2)n(b2)n
(c2)n(1)n

zn

on using (1.6) and (1.7). Clearly G1 ∈ TH . Note that, if G ∈ HT (α, β), then

∞∑
n=2

n
(a1)n−1(b1)n−1

(c1)n−1(1)n−1
+

∞∑
n=1

n
(a2)n(b2)n
(c2)n(1)n

≤ 1− β

in view of Lemma 2.2, which implies G1 ∈ HP (α, β)
⋂
TH = HT (α, β).

Theorem 2.3. Let α ≥ 0, 0 ≤ β < 1, aj , bj > 0, cj > aj + bj + 2, for j = 1, 2 and a2b2 < c2. G1 is in HT (α, β) if
and only if 2.1 holds.

Proof. In view of Theorem 2.1, sufficiency of (2.1) is clear. We only need to show the necessity of (2.1). If

G1 ∈ HT (α, β), then G1 satisfies (2.2) by Lemma 2.2 and hence (2.1) holds.
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Theorem 2.4. Let 0 ≤ β < 1, aj , bj > 0, cj > aj + bj + 1, for j = 1, 2 and a2b2 < c2. A necessary and sufficient

condition such that f ∗ (φ1 + φ2) ∈ HT (α, β) for f ∈ HT (α, β) is that

(2.4) F (a1, b1; c1 : 1) + F (a2, b2; c2 : 1) ≤ 3− β
where φ1, φ2 are as defined, respectively, by (1.6) and (1.7).

Proof. Let f = h+ ḡ ∈ HT (α, β), where h and g are given by (2.3). Then

(f ∗ (φ1 + φ2))(z) = h(z) ∗ φ1(z) + g(z) ∗ φ2(z)

= z −
∞∑

n=2

(a1)n−1(b1)n−1

(c1)n−1(1)n−1
Anz

n −
∞∑

n=1

(a2)n(b2)n
(c2)n(1)n

Bnzn.

In view of Lemma (2.2), we need to prove that (f ∗ (φ1 + φ2)) ∈ HT (α, β) if and only if

(2.5)

∞∑
n=1

n(α(n− 1) + 1)

[
(a1)n−1(b1)n−1

(c1)n−1(1)n−1
An +

(a2)n(b2)n
(c2)n(1)n

Bn

]
≤ 2− β.

As an application of Lemma (2.2), we have

An ≤
1

n(α(n− 1) + 1)
, Bn ≤

1

n(α(n− 1) + 1)
.

Therefore, the left side of (2.5) is bounded above by
∞∑

n=1

[
(a1)n−1(b1)n−1

(c1)n−1(1)n−1
+

(a2)n(b2)n
(c2)n(1)n

]
= F (a1, b1; c1 : 1) + F (a2, b2; c2 : 1)− 1.

The last expression is bounded above by 2 − β if and only if (2.4) is satisfied. This proves (2.5) and the results

follows.

Theorem 2.5. If aj , bj > 0 and cj > aj + bj + 1 for j = 1, 2, then a sufficient condition for a function

G2 =

∫ z

0

F (a1, b1; c1; t)dt+

∫ z

0

[F (a2, b2; c2; t)− 1]dt

to be in HP (α, β) is that(
α(a1b1)

c1 − a1 − b1 − 1
+ 1

)
F (a1, b1; c1; 1) +

(
α(a2b2)

c2 − a2 − b2 − 1
+ 1

)
F (a2, b2; c2; 1) ≤ 3− β

where α ≥ 0 and 0 ≤ β < 1.

Proof. In view of Lemma 1.2, the function

G2(z) = z +

∞∑
n=2

(a1)n−1(b1)n−1

(c1)n−1(1)n
zn +

∞∑
n=2

(a2)n−1(b2)n−1

(c2)n−1(1)n
zn

is in HP (α, β) if

(2.6)

∞∑
n=2

n(α(n− 1) + 1)

[
(a1)n−1(b1)n−1

(c1)n−1(1)n
+

(a2)n−1(b2)n−1

(c2)n−1(1)n

]
≤ 1− β.

By a simple computation we obtain
∞∑

n=2

n(α(n− 1) + 1)

[
(a1)n−1(b1)n−1

(c1)n−1(1)n
+

(a2)n−1(b2)n−1

(c2)n−1(1)n

]
=

∞∑
n=1

(αn+ 1)

[
(a1)n(b1)n
(c1)n(1)n

+
(a2)n(b2)n
(c2)n(1)n

]
.

The result follows from an application of Lemma 1.1.

Theorem 2.6. If a1, b1 > −1, c1 > 0, a1b1 < 0, a2 > 0, b2 > 0, and cj > aj + bj + 2, j = 1, 2, then

G3(z) =

∫ z

0

F (a1, b1; c1; t)dt−
∫ z

0

[F (a2, b2; c2; t)− 1]dt

to be in HP (α, β) if and only if(
α(a1b1)

c1 − a1 − b1 − 1
+ 1

)
F (a1, b1; c1; 1)−

(
α(a2b2)

c2 − a2 − b2 − 1
+ 1

)
F (a2, b2; c2; 1) + 1 ≥ β

where α ≥ 0 and 0 ≤ β < 1.
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Proof. We write

G3(z) = z − |a1b1|
c1

∞∑
n=2

(a1 + 1)n−2(b1 + 1)n−2

(c1 + 1)n−2(1)n
zn −

∞∑
n=2

(a2)n−1(b2)n−1

(c2)n−1(1)n
zn.

In view of Lemma (2.2) it is sufficient to show that

(2.7)

∞∑
n=2

n(α(n− 1) + 1)

[
|a1b1|
c1

(a1 + 1)n−2(b1 + 1)n−2

(c1 + 1)n−2(1)n
+

(a2)n−1(b2)n−1

(c2)n−1(1)n

]
≤ 1− β.

By a routine computation (2.7) can be written as

α

∞∑
n=1

|a1b1|
c1

(a1 + 1)n−1(b1 + 1)n−1

(c1 + 1)n−1(1)n−1
+ α

∞∑
n=1

n
(a2)n(b2)n
(c2)n(1)n

+

∞∑
n=1

|a1b1|
c1

(a1 + 1)n−1(b1 + 1)n−1

(c1 + 1)n−1(1)n
+

∞∑
n=1

(a2)n(b2)n
(c2)n(1)n

≤ (1− β).

Or equivalently

α

∞∑
n=0

(a1 + 1)n(b1 + 1)n
(c1 + 1)n(1)n

+
αc1
|a1b1|

∞∑
n=1

n
(a2)n(b2)n
(c2)n(1)n

+

∞∑
n=0

(a1 + 1)n(b1 + 1)n
(c1 + 1)n(1)n+1

+
c1
|a1b1|

∞∑
n=1

(a2)n(b2)n
(c2)n(1)n

≤ c1(1− β)

|a1b1|
.

But, this is equivalent to

αc1
a1b1

∞∑
n=1

n
(a1)n(b1)n
(c1)n(1)n

+
αc1
|a1b1|

∞∑
n=1

n
(a2)n(b2)n
(c2)n(1)n

+
c1
a1b1

∞∑
n=1

(a1)n(b1)n
(c1)n(1)n

+
c1
|a1b1|

∞∑
n=1

(a2)n(b2)n
(c2)n(1)n

≤ c1(1− β)

|a1b1|
.

which yields(
α(a1b1)

c1 − a1 − b1 − 1
+ 1

)
F (a1, b1; c1; 1)−

(
α(a2b2)

c2 − a2 − b2 − 1
+ 1

)
F (a2, b2; c2; 1) ≥ −1 + β

In particular, the results parallel to Theorems 2.1, 2.4 ,2.5 and 2.6 may also be obtained for the incomplete beta
function ϕ(a, c; z) as defined by (1.5). If

ψ1(z) = zϕ(a1, c1; z) = z +

∞∑
n=2

(a1)n−1

(c1)n−1
zn,

ψ2(z) = ϕ(a2, c2; z)− 1 =

∞∑
n=1

(a2)n
(c2)n

zn, |a2| < |c2|

then

ψ1(z) + ψ2(z) ≡ φ1(z) + φ2(z)

whenever b1 = 1, b2 = 1. Note that

ψ1(1) = F (a1, 1; c1; 1) =
c1 − 1

c1 − a1 − 1
and ψ2(1) = F (a2, 1; c2; 1)− 1 =

a2
c2 − a2 − 1

.

Theorem 2.7. If aj > 0 and cj > aj + 3 for j = 1, 2, then a sufficient condition for G = ψ1 + ψ2 to be harmonic

univalent in U with ψ1 + ψ2 ∈ HP (α, β), is that[
2α(a1)2

(c1 − a1 − 3)2
+

2αa1 + c1 − 2

c1 − a1 − 2

]
c1 − 1

c1 − a1 − 1

+

[
2α(a2)2

(c2 − a2 − 3)2
+

a2
c2 − a2 − 2

]
c2 − 1

c2 − a2 − 1
≤ 2− β

where α ≥ 0 and 0 ≤ β < 1.
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Theorem 2.8. Let 0 ≤ β < 1, aj > 0, cj > aj + 2, for j = 1, 2 and a2 < c2. A necessary and sufficient condition

such that f ∗ (ψ1 + ψ2) ∈ HT (α, β) for f ∈ HT (α, β) is that

c1 − 1

c1 − a1 − 1
+

c2 − 1

c2 − a2 − 1
≤ 3− β.

Theorem 2.9. If aj > 0 and cj > aj + 2 for j = 1, 2, then sufficient condition for∫ z

0

ϕ(a1, c1; t)dt+

∫ z

0

[ϕ(a2, c2; t)− 1]dt

is in HP (α, β) is (
αa1

c1 − a1 − 2
+ 1

)
c1 − 1

c1 − a1 − 1
+

(
αa2

c2 − a2 − 2
+ 1

)
c2 − 1

c2 − a2 − 1
≤ 3− β

where α ≥ 0 and 0 ≤ β < 1.

Theorem 2.10. If a1 > −1, c1 > 0, a1 < 0, a2 > 0, and cj > aj + 3, j = 1, 2, then∫ z

0

ϕ(a1, c1; t)dt−
∫ z

0

[ϕ(a2, c2; t)− 1]dt

is in HP (α, β) if and only if(
αa1

c1 − a1 − 2
+ 1

)
c1 − 1

c1 − a1 − 1
−
(

αa2
c2 − a2 − 2

+ 1

)
c2 − 1

c2 − a2 − 1
+ 1 ≥ β

where α ≥ 0 and 0 ≤ β < 1.
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